Perbaikan Desain Proteksi Petir Saluran Transmisi 150 kV Payakumbuh – Koto Panjang
DOI:
https://doi.org/10.21063/JTE.2018.3133701Kata Kunci:
Trip-out petir, tahanan kaki menara, saluran transmisi, IKL, panjang dari gap arcing hornAbstrak
Aktifitas petir di Indonesia sangat tinggi, dan trip-out petir pada saluran transmisi sering terjadi. Pada paper ini, kinerja petir pada saluran transmisi 150 kV Payakumbuh – Koto Panjang di teliti secara detail dan menunjukan bahwa tingkat trip-out petir tergantung pada aktifitas petir di area sekitarnya, tahanan kaki menara, panjang span dan panjang dari gap arching horn. Tingkat trip-out petir yang diamati sesuai dengan hasil simulasi dengan menggunakan program IEEE Flash. Ketika tahanan kaki menara pada semua menara di seting kurang dari 10 W dan panjang dari gap arcing horn di seting menjadi 1.2 m sampai 1.3 m, tingkat trip-out petir diharapkan berkurang 50% dari tingkat trip-out petir yang terjadi.
Referensi
Meteorological and Geophysical of Padang Panjang, “Annual report,” BMKG Padang Panjang, Indonesia, Dec. 2010.
J. He, X. Wang, Z. Yu, and R. Zeng, “Statistical Analysis on Lightning Performance of Transmission Lines in Several Regions of China,” IEEE Trans. Power Deliv., vol. 30, no. 3, pp. 1543–1551, 2014. http://ieeexplore.ieee.org/document/6924796/
R. de la Rosa, G. Enriquez, and J. L. Bonilla, “Contributions to lightning research for transmission line compaction,” IEEE Trans. Power Deliv., vol. 3, no. 2, pp. 716 – 723, Apr. 1988.
I. M. Rawi and M. Z. A. A. Kadir, “Investigation on the 132kV overhead lines lightning- related flashovers in Malaysia,” in Proc. VIII International Symposium on Lightning Protection (SIPDA), Balneario Comboriu, Brazil, Oct 2015, pp. 239 – 243. http://ieeexplore.ieee.org/document/4310/
Subcommittee for transmission lines, study committee a lightning risk, “Application Guide for Transmission Line Surge Arrester,” CRIEPI Report H-07 2012 (in Japanese).
IEEE Guide for Improving the Lightning Performance of Transmission Lines, IEEE Std 1243-1997, pp. 1 – 44, Dec. 1997. http://ieeexplore.ieee.org/document/640303/
F. M. Gatta, A. Geri, S. Lauria, M. Maccioni, and F. Palone, “Tower Grounding Improvement vs. Line Surge Arresters: Comparison of Remedial Measures for High-BFOR Subtransmission Lines,” IEEE Trans. Ind. Apl., vol. 51, no. 6, pp. 4952 – 4960, June 2015. http://ieeexplore.ieee.org/document/7131509/
S. Wu and W. Sun, “Back flashover protection performance analysis of 220kV double circuit transmission line,” in Proc. Asia-Pacific Conference Power and Energy Engineering, (APPEEC), Wuhan, Cina, March 2011, pp. 1 – 4. http://ieeexplore.ieee.org/document/5749070/
A. Ametani and T. Kawamura, “A method of a lightning surge analysis recommended in Japan using EMTP,” IEEE Trans. Power Deliv., vol. 20, no. 2, pp. 867–875, Apr. 2005. http://ieeexplore.ieee.org/document/1413327/
J. Sardi and M. Z. A. Ab Kadir, “Investigation on the effects of line parameters to the lightning performance of 132 kV Kuala Krai-Gua Musang transmission line,” in Proc. 7th International Symposium on Power Engineering and Optimization, (PEOCO), Langkawi, Malaysia, June 2013, pp. 594 – 599. http://ieeexplore.ieee.org/document/6564617/?d enied
E. F. Koncel, “Potential of a Transmission-Line Tower Top When Struck by Lightning,” Trans. Am. Inst. Electr. Eng., vol. 75, no. 3, pp. 457 – 462, Jan. 1956. http://ieeexplore.ieee.org/document/4499327/
A. Holdyk and B. Gustavsen, “Inclusion of Field Solver-Based Tower Footing Grounding Models in Electromagnetic Transients Programs,” IEEE Trans. Ind. Apl., vol. 51, no. 6, pp. 5101 – 5106, 2015. http://ieeexplore.ieee.org/document/7056439/
Y. Warmi and K. Michishita, “Investigation of Lightning Trip-out on 150 kV Transmission Line in West Sumatra,” IEEJ Trans. Electrical and Electronic Engineering., vol. 11, Issue. 5, pp.671–673, September 2016. DOI:10.1002/tee.22286. http://onlinelibrary.wiley.com/doi/10.1002/tee.2 2286/full
IEEE Working group on Lightning Performance of Transmission Lines, “A simplified Method for Estimating Lightning Performance of Transmission Lines,” IEEE Trans. Power Appar. Syst., vol. PAS-104, pp. 919 – 932, July 1985. http://ieeexplore.ieee.org/document/5528828/
IEEE Working group on Estimating the Lightning Performance of Transmission Lines, “IEEE Working Group Report – Estimating Lightning Performance of Transmission Line II – Updates to Analytical Models,” IEEE Trans. Power Deliv., vol. PWRD-8, no. 3, pp. 1254 – 1267, July 1993. http://ieeexplore.ieee.org/document/5528828/
J.G. Anderson, “Lightning Performance of Transmission Line,” Transmission Line References Book 345 and Above, California, 1982, pp. 545–597.
W. A. Chisholm, “The IEEE Flash program: A Structure for Evaluation of Transmission Lightning Performance”, IEEJ Trans. Power & Energy, vol. 8, No. 8, pp.914–917, 2001.
M. Darveniza, M. A. Aargent, G. J. Limbourn, Liew Ah Choy, R. O. Caldwell, J. R. Currie, B. C. Holcombe, R. H. Stillman, R. Frowd, “Modelling for lightning performance calculations”, IEEE Trans. Power Appar. Syst., vol. PAS-98, pp. 1900 – 1908, Dec. 1979.
Y. Warmi and K. Michishita, “Horn Length Estimation for Decrease of Trip-out Rates on 150 kV Transmission Line in West Sumatra in Indonesia,” Joint Conference of The thenth International Workshop on High Voltage Engineering (IWHV 2016) and 2016 Japan- PERBAIKAN DESAIN PROTEKSI PETIR SALURAN TRANSMISI 150 KV PAYAKUMBUH – KOTO PANJANG 6 Koroea Joint Symposium on Electrical Discharge and High Voltage Engineering (JK 2016 on ED & HVE), ED–16–127, SP–16–056, HV–16–112, Miyazaki, Japan (2016.11.4). https://ci.nii.ac.jp/naid/40021027830/
Y. Warmi and K. Michishita, “Tower-footing Resistance and Lightning Trip-outs of 150 KV Transmission Lines in West Sumatra in Indonesia, ” International Review of Electrical Engineering (IREE), Vol 12, No 3, ISSN 1827 – 6660. https://doi.org/10.15866/iree.v12i3.12233
Subcommittee for transmission lines, Lightning protection design committee, “Guide to Lightning Protection Design for Transmission Line, “CRIEPI Report T-72 2002 (in Japanese).
D. Tanaka, T. Shindo, T. Miki, M. Miki, ”Probability of concurrent flashover in a parallel gap configuration”, IEEJ Trans. Power & Energy, , vol. 11, pp. 669–674, 2015. DOI:10.1541/teejpes.135.669.