Studi Analisis Pengaruh Desain Kumparan 5/6 Fasa Terhadap Kinerja Motor Induksi 3-fasa
DOI:
https://doi.org/10.21063/JTE.2022.31331104Abstrak
Studi ini dimaksudkan untuk mengkaji pengembangkan desain kumparan motor induksi 3-fasa dengan desain lilitan mengacu kepada desain lilitan dengan jumlah fasa yang lebih banyak dari 3 fasa. Khusus untuk studi kali ini lebih difokuskan kepada desain kumparan 6 fasa yang diterapkan pada motor induksi 3-fasa tetapi arah fluks yang dihasilkan motor dibuat untuk menghasilkan 5 medan fluks yang berbeda sehingga motor ini akan bekerja seolah-olah seperti motor induksi 5-fasa. Desain 6 fasa sengaja diterapkan pada motor dengan menggunakan desain 2 lapis dari desain 3-fasa yang digeser sudut fasanya agar motor mempunyai impedansi total kumparan perfasanya tetap sama. Analisa pada penelitian lebih difokuskan kepada fluks yang dihasilkan pada kumparan motor. Dari hasil penelitian diperoleh bahwa walaupun impedansi kumparan yang dilewati arus 3-fasa sama, tetapi jika fluks yang dihasilkan kumparan motor tidak identik sama maka motor induksi 3-fasa bekerja dengan sistem fluks yang tidak seimbang dan mengakibatkan motor bekerja dengan kinerja yang jelek. Oleh karena itu, keseimbangan fluks yang dihasilkan pada kumparan motor sangat mempengaruhi kinerja motor, dimana semakin mendekati seimbang fluks yang dihasilkan kumparan motor induksi 3-fasa maka motor akan bekerja dengan kinerja yang lebih baik.
Referensi
S. J. Chapman, Elecrical Machinery Fundamentals, 4th ed. New York: McGraw-Hill, 2005.
P. C. Sen, Principles of Electrical Machines and Power Electronics, 2nd ed. New York: John Wiley & Sons, 1997.
W. Fei, P. C. K. Luk, J. Ma, J. X. Shen, and G. Yang, “A High-Performance Line-Start Permanent Magnet Synchronous Motor Amended From a Small Industrial Three-Phase Induction Motor,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4724–4727, 2009.
R. Vartanian and H. A. Toliyat, “Design and Comparison of an Optimized Permanent Magnet-Assisted Synchronous Reluctance Motor ( PMa-SynRM ) with an Induction Motor with Identical NEMA Frame Stators,” in 2009 IEEE Electric Ship Technologies Symposium (ESTS 2009) - Baltimore, MD, USA (2009.04), 2009, pp. 107–112.
M. Jones, S. . Vukosavic, and E. Levi, “Combining Induction and Permanent Magnet Synchronous Machines in a Series-Connected Six-Phase Vector-Controlled Two-Motor Drive,” in IEEE 36th Conference on Power Electronics Specialists, 2005. - Aachen, Germany (June 12, 2005, 2005, pp. 2691–2697.
B. Ackermann, “Single-Phase Induction Motor with Permanent,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3530–3532, 2000.
L. N. Modran, “Digital Simulation of Induction and Permanent Magnet Synchronous Motor Starting,” in IEEE 2008 11th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) - Brasov, Romania (2008.05.22-2008.05.24), 2008, no. 4, pp. 1–7.
M. S. Manna, S. Marwaha, A. Marwaha, and C. Vasudeva, “Analysis of Permanet Magnet Linear Induction Motor ( PMLIM ) using Finite Element Method,” in IEEE 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, pp. 540–542.
M. Kondo, J. Kawamura, and N. Terauchi, “Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train,” IEEJ Trans. Ind. Appl., vol. 126, no. 2, pp. 168–173, 2006.
D. Liang and V. Zhou, “Recent market and technical trends in Copper Rotors for High-Efficiency Induction Motors,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018, pp. 1943–1948.
K. Kurihara, T. Ito, Y. Imaizumi, and T. Kubota, “Efficiency Maximization of a Single-Phase Capacitor-Run Permanent-Magnet Motor Using Response Surface Methodology,” in IEEE 2009 International Conference on Electrical Machines and Systems (ICEMS) - Tokyo, Japan (2009.11.15-2009.11.18), 2009, no. 4, pp. 6–9.
B. Stumberger, A. Hamler, V. Gorican, M. Jesenik, and M. Trlep, “Output power capability improvement in a flux-weakened permanent magnet synchronous motor with a third harmonic current injection,” J. Magn. Magn. Mater. 272–276 e1719–e1721, vol. 276, pp. 1719–1721, 2004.
S. Saito, H. Tanaka, A. Nakajima, and K. Matsuse, “Independent Vector Control of Induction Motor and Permanent Magnet Synchronous Motor fed a Four-Leg Inverter,” in 2012 IEEE International Conference on Power Electronics, Drives and Energy System, December16-19, 2012, Bengaluru, India, 2012, pp. 1–6.
K. Sakai and N. Yuzawa, “Realizing High Efficiency using Pole-Changing Hybrid Permanent Magnet Motors,” in 2013 IEEE International Electric Machines & Drives Conference (IEMDC) - Chicago, IL, USA (2013.05.12-2013.05.15), 2013, pp. 462–467.
E. Levi, M. Jones, S. N, and Vukosavic, “A Series-Connected Two-Motor Six-Phase Drive With Induction and Permanent Magnet Machines,” IEEE Trans. ENERGY Convers., vol. 21, no. 1, pp. 121–129, 2006.
R. Ni et al., “Efficiency Enhancement of General AC Drive System by Remanufacturing Induction Motor with Interior Permanent Magnet Rotor,” IEEE Trans. Ind. Electron. 2015, ISSN. 0278-0046(p) 1557-9948, vol. 0046, no. c, pp. 1–12, 2015.
Z. Anthony, “Analyzing Characteristics of the Sheda ‟ s Method for Operating the 3-phase induction Motor on Single Phase Supply ( Case studies : output power and efficiency of the motor ),” IJETT, vol. 33, no. 4, pp. 175–179, 2016.
Z. Anthony, “Equivalent Circuits for the M31D-ZA Motor ‟ s Method ( Case Studies : Currents and Power Factor of the motor ),” IJETT, vol. 25, no. 1, pp. 49–52, 2015.
Z. Anthony, “A Simple Method For Operating The Three-Phase Induction Motor On Single Phase Supply ( For Wye Connection Standard ),” IJETT, vol. 5, no. 1, pp. 13–16, 2013.
V. Malyar, O. Hamola, and V. Maday, “Calculation of capacitors for starting up a three-phase asynchronous motor fed by single-phase power supply,” in IEEE 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE), 2016, pp. 1–4.
Z. Anthony, “A Simple Method for Operating the Delta Connection Standard of the 3-phase Induction Motor on Single Phase Supply,” IJETT, vol. 15, no. 9, pp. 444–447, 2014.
Z. Anthony, “Pengembangan Rangkaian Kendali untuk Mengoperasikan Motor Induksi3-Fasa,” J. Tek. Elektro ITP, vol. 6, no. 1, pp. 81–86, 2017.
Z. Anthony, “ANALISIS KINERJA MOTOR M31-ZA UNTUK STNDAR HUBUNGAN DELTA DENGAN MENGGUNAKAN PARAMETER MOTOR INDUKSI 3-FASA,” J. Tek. Elektro ITP, vol. 4, no. 2, pp. 1–6, 2015.
A. K. Adapa and V. John, “Active Phase-Converter for Operation of Three-Phase Induction Motors on Single-Phase Grid,” in IEEE 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016, pp. 1–6.
W. Yaw-juen, L. Pierrat, and E. Helerea, “Balancing a Three-Phase Induction Motor Supplied from a Single-Phase Source with Two SVCs,” in IEEE 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), 2017, no. 3.
S. Sobhani, H. Yaghobi, and M. Samakoosh, “Optimize efficiency and torque in the single-phase induction motor by adjusting the design parameters,” 12th Int. Conf. Environ. Electr. Eng. EEEIC 2013, pp. 237–241, 2013.
E. C. Bortoni, J. V. B. Jr, P. V. V Silva, V. A. D. Faria, and P. A. V Vieira, “Evaluation of manufacturers strategies to obtain high-e ffi cient induction motors,” Sustain. Energy Technol. Assessments, vol. 31, no. November 2018, pp. 221–227, 2019.
F. Ahmed, E. Ghosh, and N. C. Kar, “Transient Thermal Analysis of a Copper Rotor Induction Motor using a Lumped Parameter Temperature Network Model,” IEEE, no. 1, 2016.
I. S. De Freitas, M. L. Quirino, and F. Salvadori, “Twelve-Phase Induction Machine Analysis With Harmonic Injection,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 1611–1618.
M. A. Fnaiech, F. Betin, and G. Capolino, “Fuzzy Logic and Sliding-Mode Controls Applied to Six-Phase Induction Machine With Open Phases,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 354–364, 2010.
I. Gonzalez-Prieto, M. J. Duran, F. Barrero, Bermudez, and H. M.Guzmán, “Impact of Post-fault Flux Adaptation on Six-phase Induction Motor Drives with Parallel Converters,” IEEE Trans. POWER Electron., vol. 8993, 2016.
J. K. Pandit, S. Member, M. V Aware, and S. Member, “Direct Torque Control Scheme for a Six-Phase Induction Motor with Reduced Torque Ripple,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 7118–7129, 2016.
H. S. Che, E. Levi, M. Jones, W. P. Hew, and N. A. Rahim, “Current Control Methods for an Asymmetrical Six- phase Induction Motor Drive,” IEEE Trans. POWER Electron., vol. 29, no. 1, pp. 407–417, 2014.
G. Aroquiadassou et al., “A simple circuit-oriented model for predicting six-phase induction machine performances,” pp. 3–8, 2006.